Learning about (Deep) Reinforcement Learning

Scott Rome

romescott@gmail.com

2 Cats

Currently the Lead Data Scientist at an ad tech firm
= Previously a Data Scientist in healthcare

Ph.D. in Mathematics

Run a ML blog: http:/srome.github.io

You May Also Know Me From...

GO gle parsing tables with beautiful soup & Q

All Shopping Videos Images News More Settings Tools

About 1,370,000 results (0.46 seconds)

python BeautifulSoup parsing table - Stack Overflow
https://stackoverflow.com/questions/23377533/python-beautifulsoup-parsing-table v

Mar 21, 2016 - Here you go: data = [table = soup.find('table’, attrs={'class"’lineltemsTable’}) table_body
= table.find(‘tbody’) rows = table_body.find_all('tr") for row in rows: cols = row.find_all('td") cols =
[ele.text.strip() for ele in cols] data.append([ele for ele in cols if ele]) # Get rid of empty values. This gives
you: [[u'1359711259', u'SRF’, ...

beautifulsoup - Python Beautiful Soup parse a table with a ... Oct 25,2013
How to parse html table with python and beautifulsoup and write to ... Mar 6,2013
python - BeautifulSoup: Get the contents of a specific table ... Nov 16, 2011
python - parsing table with BeautifulSoup and write in text file ... Feb 8,2010

More results from stackoverflow.com

Parsing HTML Tables in Python with BeautifulSoup and pandas ...
srome.github.io/Parsing-HTML-Tables-in-Python-with-BeautifulSoup-and-pandas/ v
May 30, 2016 - Something that seems daunting at first when switching from R to Python is replacing all
the ready-made functions R has. For example, R has a nice CSV reader out of the box. Python users will

eventually find pandas, but what about other R libraries like their HTML Table Reader from the xml
package?

Sadly, I'm A One Hit Wonder

What pages do your users visit?

Page Pageviews Page Value
/Parsing-HTML-Tables...fulSoup-and-pandas/ 1,462 $0.00
/An-Annotated-Proof-...plementation-Notes/ 92 $0.00
/Train-A-Neural_Net-T...Jack-With-Q-Learning/ 54 $0.00
/A-Tour-Of-Gotchas-W...ras-And-OpenAi-Gym/ 51 $0.00
/Build-Your-Own-Event...acktester-In-Python/ 51 $0.00
/Async-SGD-in-Python...plementing-Hogwild!/ 50 $0.00
/ 44 $0.00
/Eigenvesting-l-Linear...-Your-Stock-Portfolio/ 35 $0.00
/archive/ 30 $0.00
/Visualizing-the-Lear...etwork-Geometrically/ 25 $0.00

Last 7 days » PAGES REPORT)

PSA: Volunteers Wanted!

fechgliriz

You should leave with...

e Some ideas about what (deep) reinforcement learning is

e An understanding of the basic training process for reinforcement learning

e Having seen more than enough code snippets from https:/github.com/srome
/ExPyYyDQN

e Not having heard all the annoying gotchas when implementing a
reinforcement learning framework (see the post "A Tour of Gotchas When
Implementing Deep Q Networks with Keras and OpenAi Gym" from my blog
for that).

Reinforcement Learning: A Brief History

e (1950s) Roots in Optimal Control / dynamic programming, developed by
Bellman at the RAND Corporation
= Called "dynamic programming" because the Secretary of Defense
"actually had a pathological fear and hatred of the word, research"
e (1977) Formal study of Temporal Difference Learning began
(1989) Q-Learning was published
(1992) TD-Gammon developed
e (2013) Deep Q Learning published (Neural Networks used to play Atari)
()
()

e (2016) AlphaGo beats Lee Sidol
e (2017) AlphaGo Zero beats Alpha Go

Notice, the activity starting around the early 2010's... that is in part due to...

DEEP LEARNING

(

M I.‘,-

3 N Vil ; A
f

imgflip.com

Goal of Reinforcement Learning

Training an agent (e.g., a model) to interact with an
environment

B socon Anrees -
Deep RL is popular because it's the only area
in ML where it's socially acceptable to train
on the test set.

12:27 PM - 28 Oct 2017

In []:

Training Algorithm at a High Level

From (7),

—

”[Agent }
state reward action

r,
8, ! a,

" s, | Environment [<—

env # emulator environment
state # initial state from environment
agent # the thing we want to train

while game still going:
action = agent.get action(state) # get action from the agent

next state, reward, game still going = env.step(action) # pass action to emulat
or, get next state

agent.update(state, next state, action, reward) # update the agent

Differences vs. "Typical” Machine Learning Problems

e Training data is usually generated during training
e The agent (model) is not independent from the data it is trained on:
= The agent affects the generation of new training data.
= The target variable at each update step (as we will see) depends on a
version of the agent.
e |t's possible to miss part of your possible training set due to data collection
decisions

In []: while game still going:
action = agent.get action(state)
next state, reward, game still going = env.step(action)
agent.update(state, next state, action, reward)

Big Questions

state reward

e

e What libraries do we use?
e What (who?) is the agent?
e How do we select a,?
e Whatis s,?
e What is our target y,?
= What is the minibatch?

Environment]4—

action
a,

Python Libraries

.

AlE

Environment

@ Rewa
Interpreter
% \—

ATARI

Agent

* Disclaimer: Not a graphic artist.

Action

The Agent

From (3),

Convglu‘lion Conv'olution Fully cgnnected

m
c
<
Q
<
=
a
Q
a

o] QCZoaond

oocaa

cotoac B
a

elelealnle]

Ul
©
0 EEE G

EEE R e R R
R I R R R N
. 2 « + 4
. + + ¢ “r €« - el
®) O)

Figure 1 | Schematic illustration of the convolutional neural network. The symbolizes sliding of each filter across input image) and two fully connected
details of the architecture are explained in the Methods. The input to the neural layers with a single output for each valid action. Each hidden layer is followed
network consists of an 84 X 84 X 4 image produced by the preprocessing by a rectifier nonlinearity (that is, max(0,x)).

map ¢, followed by three convolutional layers (note: snaking blue line

How Do We Select a;: Exploration / Exploitation

The "Multi-Armed Bandit” Problem

:3
: ‘]

y 4(‘“’
el \' l’
(T A

al |- < Q >
ke

)
)
N
)

"Originally considered by Allied scientists in World War I, it proved so intractable that,
according to Peter Whittle, the problem was proposed to be dropped over Germany so
that German scientists could also waste their time on it." - Wikipedia

Approximate Solution to MAB: € - Greedy Strategy

e For each state, select a random action (level) with probability €.
e Otherwise, allow the agent to choose the action.
e ¢ annealing is used to allow the agent to select more actions over time.

In []: def get action(self, image=None, epsilon override=None):
epsilon = self.get epsilon(epsilon override) # Annealing code is hidden in here
if np.random.uniform(®, 1) < 1 - epsilon:
rewards = self. get g values(image=image)
action = self. actions[np.argmax(rewards)]
else:
action = np.random.choice(self. actions)

return action

What is s;?

The emulator returns an image after each action. To form s;, we must

Drop image to grayscale
Frame skip
= Every n-th frame is considered for the definition of the current state
» 1 is sometimes referred to as ¢ length
Frames are stacked as an input
= For a (84,84) grayscale image and frame skip of 4: an instance state
has the dimension (4,84,84,1)
Consecutive max
= Take pixel-wise max of (n — 1)-th and n-th image from the emulator
as the n-th frame.

From (5),

XIRE_|1XI%] 1 _1%1%
3.3 .3 ..
RN IRIR | IRIX

Frame Skip / Consecutive Max Code during Emulator
Step

In [6]: def step(self, action):
""" This relies on the fact that the underlying environment creates new images
for each frame.
By default, opengym uses atari py's getScreenRGB2 which creates a new array
for each frame."""

total reward = 0

obs = None
for k in range(self.frame skip):
last obs = obs

Make sure you are using a "NoFrameskip-v4" ROM
obs, reward, is terminal, info = self. env.step(action)
total reward += reward

if is terminal:
End episode if is terminal
if k == 0 and last obs is None:
last obs = obs
break

if self.consecutive max and self.frame skip > 1:
obs = np.maximum(last obs, obs)

Store observation, greyscale and cropping are applied in here
self.store observation(obs)

return self. get current state(), total reward, is terminal

As Promised in the Abstract...

"

Z’ | ' , d p
r
IT'S MATHIIME

MEeMEGENEIALOIIED

What is y,?

Let ¥’ € R be a reward from performing action a at state 5. The action-value function
Q provides a mapping from (s, a) — r’.

e Using O, you can define a policy for the agent.
e Greedy Policy:
= At each time step, the agent selects the action associated with the
highest reward.

More Definitions

Assume r € R is the resulting reward from the emulator for performing a at state s,
and let y € R be a discount.

We define the optimal policy as the actions chosen via O, which satisfies the Bellman
Equation:
S, a] ,

i.e., the reward plus the discounted future rewards for following the policy.

Q*(s,a) = Eg.g |r + ymax Q*(s", d’)

a

y; defined

We define our neural network with weights @ as Q(s, a, 8). For each example
(S;, Si41, Az, 1), We select weights 8, and define the training target to be:

yi(0;) =1, +y max O(St4+1, a', ;)

e Notice, our target depends on 6;-- it's not fixed like traditional machine
learning problems!
e Some out-of-scope math proves that this y; allows us to learn Q*
= (Technically, we don't optimize a single loss function, but a sequence
of loss functions)

Wait? y, depends on 8? What 6?

e New targets are generated every minibatch using a recent, fixed set of
weights 6.
e O, is typically updated with recent weights every ~10000 steps (for example).

= i.e. 0, = 0, for some fixed older set of weights.
e This technique is referred to as the fixed target network.

Other notes on y;

o Notationally, it is easier to define the neural network as Q(s, a, 0).

e Practically, it is defined as O(s, 8) and y, € R! i.e.y, has a reward entry for
every action.

In [4]:

Calculating the max,» O(s;+1, a', 0;)

def build training variables(self, future states, actions, is terminal):

future rewards = self. get model(fixed=True).predict(future states) # Get the T

ixed target network!

max_rewards = np.max(future rewards, axis=1).reshape((len(future rewards), 1))

Code for an optimization around training

which updates reward for ONLY the completed action

training mask masks rewards for other actions so

we only update weights according to the action we chose

training mask = np.zeros(future rewards.shape)

action indexes = np.array([[np.where(self. actions == action)[0][0]] for action

in actions])

is terminal = is terminal * 1. # convert to float
for index0, indexl in zip(range(self. minibatch), action indexes):
training mask[index0, indexl] = 1.

return max rewards, training mask, is terminal

In [1:

What is the minibatch?

e Time correlation of examples causes divergence during training

e The solution is "Replay Memory"

= Store m examples in memory D and sample minibatches from D for
training!

def sample(self):

Code to sample from the replay memory

ind = np.random.choice(self. size, size=self. mini batch size)

Avoiding a copy action as much as possible

self. mini batch state[:] = self. memory state[ind,:,:,:]

self. mini batch future state[:] = self. memory future statel[ind,:,:,:]
rewards = self. rewards[ind]

is terminal = self. is terminal[ind]

actions = self. actions[ind]

return self. mini batch state, self. mini batch future state, actions, rewards,

is terminal

Final Training Algorithm

In [1: def run episode(self, training=True):
state = self.reset environment()
is terminal = False
total reward = 0
steps = 0

while not is terminal:
if not training:
self.render() # Speeds up training to not display it

action = self.get action(state, training)
next state, reward, is terminal = self.step(action)

if training:
clipped reward = np.clip(reward ,-self.reward clip ,self.reward clip)

self.replay memory.add example(state=state,
future state=next state,

action=action,
reward=clipped reward,
is terminal=is terminal)

self.training step()

state = next state
total reward += reward
steps +=1

return total reward, steps # for logging

S w e w © w o
o ~ (%2l ~ o ~ W ~
~N - - — - <] o o
anjep O 2besany
()
i
I
—
(7]
&
.m M 2 “ ° 9 2 18 7
| | I
n piemay abelany
 ——
(S
=

20

10

20

10

Epoch

Epoch

Thank You

e Slides will be available on http:/srome.github.io
e The (functional) framework code is available at https:/github.com/srome

[ExPyDQN.
e Check out TechGirlz!

References

1. Playing Atari with Deep Reinforcement Learning
2. Wikipedia: Reinforcement Learning

3. Human-level control through deep reinforcement learning
4. Wikipedia: Banach fixed-point theorem

5. Frame Skipping and Preprocessing for Deep Q Networks on Atari 2600
6. Wikipedia: Multi-Armed Bandit
7. Google Image Search

8. Scholarpedia: Reinforcement Learning
9. Richard Bellman on the Birth of Dynamic Programming

