
Learning about (Deep) Reinforcement LearningLearning about (Deep) Reinforcement Learning
Scott RomeScott Rome
romesco�@gmail.com

About MeAbout Me

2 Cats
Currently the Lead Data Scien�st at an ad tech firm

Previously a Data Scien�st in healthcare
Ph.D. in Mathema�cs
Run a ML blog: h�p://srome.github.io

You May Also Know Me From...You May Also Know Me From...

Sadly, I'm A One Hit WonderSadly, I'm A One Hit Wonder

PSA: Volunteers Wanted!PSA: Volunteers Wanted!

You should leave with...You should leave with...
Some ideas about what (deep) reinforcement learning is
An understanding of the basic training process for reinforcement learning
Having seen more than enough code snippets from

Not having heard all the annoying gotchas when implemen�ng a
reinforcement learning framework (see the post

 from my blog
for that).

h�ps://github.com/srome
/ExPyDQN

"A Tour of Gotchas When
Implemen�ng Deep Q Networks with Keras and OpenAi Gym"

Reinforcement Learning: A Brief HistoryReinforcement Learning: A Brief History
(1950s) Roots in Op�mal Control / dynamic programming, developed by
Bellman at the RAND Corpora�on

Called "dynamic programming" because the Secretary of Defense
"actually had a pathological fear and hatred of the word, research"

(1977) Formal study of Temporal Difference Learning began
(1989) Q-Learning was published
(1992) TD-Gammon developed
(2013) Deep Q Learning published (Neural Networks used to play Atari)
(2016) AlphaGo beats Lee Sidol
(2017) AlphaGo Zero beats Alpha Go

No�ce, the ac�vity star�ng around the early 2010's... that is in part due to...

Goal of Reinforcement LearningGoal of Reinforcement Learning
Training an agent (e.g., a model) to interact with anTraining an agent (e.g., a model) to interact with an
environmentenvironment

Training Algorithm at a High LevelTraining Algorithm at a High Level
From (7),

In []: env # emulator environment
state # initial state from environment
agent # the thing we want to train

while game_still_going:
action = agent.get_action(state) # get action from the agent
next_state, reward, game_still_going = env.step(action) # pass action to emulat

or, get next state
agent.update(state, next_state, action, reward) # update the agent

Di�erences vs. "Typical" Machine Learning ProblemsDi�erences vs. "Typical" Machine Learning Problems
Training data is usually generated during training
The agent (model) is not independent from the data it is trained on:

The agent affects the genera�on of new training data.
The target variable at each update step (as we will see) depends on a
version of the agent.

It's possible to miss part of your possible training set due to data collec�on
decisions

In []: while game_still_going:
action = agent.get_action(state)
next_state, reward, game_still_going = env.step(action)
agent.update(state, next_state, action, reward)

Big QuestionsBig Questions

What libraries do we use?
What (who?) is the agent?
How do we select ?
What is ?
What is our target ?

What is the minibatch?

at
st

yt

Python LibrariesPython Libraries

 Disclaimer: Not a graphic ar�st.∗

The AgentThe Agent
From (3),

How Do We Select How Do We Select : Exploration / Exploitation: Exploration / Exploitation

The "Multi-Armed Bandit" ProblemThe "Multi-Armed Bandit" Problem

"Originally considered by Allied scien�sts in World War II, it proved so intractable that,
according to Peter Whi�le, the problem was proposed to be dropped over Germany so
that German scien�sts could also waste their �me on it." - Wikipedia

at

Approximate Solution to MAB: Approximate Solution to MAB: - Greedy Strategy - Greedy Strategy
For each state, select a random ac�on (level) with probability .
Otherwise, allow the agent to choose the ac�on.

 annealing is used to allow the agent to select more ac�ons over �me.

In []:

ϵ
ϵ

ϵ

def get_action(self, image=None, epsilon_override=None):
epsilon = self.get_epsilon(epsilon_override) # Annealing code is hidden in here
if np.random.uniform(0, 1) < 1 - epsilon:

rewards = self._get_q_values(image=image)
action = self._actions[np.argmax(rewards)]

else:
action = np.random.choice(self._actions)

return action

What is What is ??
The emulator returns an image a�er each ac�on. To form , we must

Drop image to grayscale
Frame skip

Every -th frame is considered for the defini�on of the current state
 is some�mes referred to as length

Frames are stacked as an input
For a (84,84) grayscale image and frame skip of 4: an instance state
has the dimension (4,84,84,1)

Consecu�ve max
Take pixel-wise max of -th and -th image from the emulator
as the -th frame.

From (5),

st
st

n
n ϕ

(n − 1) n
n

Frame Skip / Consecutive Max Code during EmulatorFrame Skip / Consecutive Max Code during Emulator
StepStep

In [6]: def step(self, action):
""" This relies on the fact that the underlying environment creates new images

for each frame.
 By default, opengym uses atari_py's getScreenRGB2 which creates a new array
for each frame."""

total_reward = 0

obs = None
for k in range(self.frame_skip):

last_obs = obs

Make sure you are using a "NoFrameskip-v4" ROM
obs, reward, is_terminal, info = self._env.step(action)
total_reward += reward

if is_terminal:
End episode if is terminal
if k == 0 and last_obs is None:

last_obs = obs
break

if self.consecutive_max and self.frame_skip > 1:
obs = np.maximum(last_obs, obs)

Store observation, greyscale and cropping are applied in here
self.store_observation(obs)

return self._get_current_state(), total_reward, is_terminal

As Promised in the Abstract...As Promised in the Abstract...

What is What is ??
Let be a reward from performing ac�on at state . The ac�on-value func�on

 provides a mapping from .

Using , you can define a policy for the agent.
Greedy Policy:

At each �me step, the agent selects the ac�on associated with the
highest reward.

yt
∈ ℝr′ a s

Q (s, a) → r′

Q

More De�nitionsMore De�nitions
Assume is the resul�ng reward from the emulator for performing at state ,
and let be a discount.

We define the op�mal policy as the ac�ons chosen via , which sa�sfies the Bellman
Equa�on:

i.e., the reward plus the discounted future rewards for following the policy.

r ∈ ℝ a s
γ ∈ ℝ

Q∗

(s, a) = [r + γ (,) s, a] ,Q∗ 𝔼 ∼s′ max
a′

Q∗ s′ a′ ∣
∣∣

 de�ned de�ned
We define our neural network with weights as . For each example

, we select weights and define the training target to be:

No�ce, our target depends on -- it's not fixed like tradi�onal machine
learning problems!
Some out-of-scope math proves that this allows us to learn

(Technically, we don't op�mize a single loss func�on, but a sequence
of loss func�ons)

yt
θ Q(s, a, θ)

(, , ,)st st+1 at rt θt

() := + γ Q(, ,)yt θt rt max
a′

st+1 a′ θt

θt

yt Q∗

Wait? Wait? depends on depends on ? What ? What ??
New targets are generated every minibatch using a recent, fixed set of
weights .

 is typically updated with recent weights every ~10000 steps (for example).
i.e. for some fixed older set of weights.

This technique is referred to as the fixed target network.

yt θ θ

θ ̂ t
θ ̂ t

=θ ̂ t θ ̂ ti

Other notes on Other notes on
Nota�onally, it is easier to define the neural network as .
Prac�cally, it is defined as and , i.e. has a reward entry for
every ac�on.

yt
Q(s, a, θ)

Q(s, θ) ∈yt ℝ|A| yt

Calculating the Calculating the
In [4]:

Q(, ,)maxa′ st+1 a′ θi

def _build_training_variables(self, future_states, actions, is_terminal):
future_rewards = self._get_model(fixed=True).predict(future_states) # Get the f

ixed target network!
max_rewards = np.max(future_rewards, axis=1).reshape((len(future_rewards), 1))

Code for an optimization around training
which updates reward for ONLY the completed action
training_mask masks rewards for other actions so
we only update weights according to the action we chose
training_mask = np.zeros(future_rewards.shape)
action_indexes = np.array([[np.where(self._actions == action)[0][0]] for action

in actions])
is_terminal = is_terminal * 1. # convert to float
for index0, index1 in zip(range(self._minibatch), action_indexes):

training_mask[index0, index1] = 1.

return max_rewards, training_mask, is_terminal

What is the minibatch?What is the minibatch?
Time correla�on of examples causes divergence during training

The solu�on is "Replay Memory"

Store examples in memory and sample minibatches from for
training!

In []:

m D D

def sample(self):
Code to sample from the replay memory

ind = np.random.choice(self._size, size=self._mini_batch_size)

Avoiding a copy action as much as possible
self._mini_batch_state[:] = self._memory_state[ind,:,:,:]
self._mini_batch_future_state[:] = self._memory_future_state[ind,:,:,:]

rewards = self._rewards[ind]
is_terminal = self._is_terminal[ind]
actions = self._actions[ind]

return self._mini_batch_state, self._mini_batch_future_state, actions, rewards,
is_terminal

Final Training AlgorithmFinal Training Algorithm
In []: def run_episode(self, training=True):

state = self.reset_environment()
is_terminal = False
total_reward = 0
steps = 0

while not is_terminal:
if not training:

self.render() # Speeds up training to not display it

action = self.get_action(state, training)
next_state, reward, is_terminal = self.step(action)

if training:
clipped_reward = np.clip(reward ,-self.reward_clip ,self.reward_clip)
self.replay_memory.add_example(state=state,

future_state=next_state,
action=action,
reward=clipped_reward,
is_terminal=is_terminal)

self.training_step()

state = next_state
total_reward += reward
steps += 1

return total_reward, steps # for logging

Training ResultsTraining Results

Thank YouThank You
Slides will be available on
The (func�onal) framework code is available at

.
Check out TechGirlz!

h�p://srome.github.io
h�ps://github.com/srome

/ExPyDQN

ReferencesReferences
1.
2.
3.
4.
5.
6.
7.
8.
9.

Playing Atari with Deep Reinforcement Learning
Wikipedia: Reinforcement Learning
Human-level control through deep reinforcement learning
Wikipedia: Banach fixed-point theorem
Frame Skipping and Preprocessing for Deep Q Networks on Atari 2600
Wikipedia: Mul�-Armed Bandit
Google Image Search
Scholarpedia: Reinforcement Learning
Richard Bellman on the Birth of Dynamic Programming

